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Abstract

This is a study of the convergence of image measures unfn-l(A) =
un{x:fn(x) e A}, where un is a measure on X which is finite on compacts,
and fn is a measurable mapping from X to Y, two locally compact second
countable Hausdorff spaces. A basic result for image measures asserts
that if the un‘s are probability measures which converge weakly to u, and
fn(xn) -+ f(x) whenever X, 7 X for u a.e. x, then unfn-l converges weakly
to uf-l. We present a similar result and a partial converse for general
Mo where vague convergence is used instead of weak convergence (un converges
vaguely to u if ff dpn -> ff dy for each continuous function f on X with
compact support). Its proof is based on a Fatou-like lemma for vaguely
converging measures. We also study the convergence in distribution of
random image measures £n¢n_l where En is a random measure on X and ¢n is a
random function from X to Y. We show how these measures can be used to
analyze thinnings of point processes and random measures.

The convergence of integrals ffn dun is essentially equivalent to the
convergence of image measures, since IX fn(x) dun(x) = {t dunfn’l(t). s

Using this idea, we present several convergence theorems for these integrals

when the un's are weakly or vaguely convergent. These are similar to the

o e

result that if p-integrable fn converge in p-measure to some f, then

ffn dpy » If dy if and only if the fn are uniformly p-integrable. We also
extend our integral convergence theorems to mixtures of measures vn(A) =
fkn(x,A) dun(x), which arise in the study of extreme order statistics of

exchangeable variables, and randomly selected partial sums.




1. Introduction

Let X denote a locally compact second countable Hausdorff space,
let X be the Borel o-algebra on X generated by its topology, and let bX
be the bounded (i.e. relatively compact) sets in X. We denote by Mb(x)
the set of finite (nonnecative) measures on X. A sequence My in Mb(x)
converges weakly to p, written * pin M, (X), if ffdu = ffdu for

> i 2 n 11) g n L
bounded continuous function f on X; see [1] and [3]. We let M(X) denote

;
1
the set of measures on X that are finite on compact sets (Radon Measures). i

A sequence n in M(X) converges vaguely to u, writtea My h 4 u in M(X), if -
ffduu > ffdu for any continuous function f on X with compact support; sece
[2], [6] or [8] for the basics on this.
The subtle difference between weak and vague convergence can be seen
by the following statements.
(1) My 4 u in Mb(x) if and only if by § L in Mb(x) and un(x) > 1(X)
(see [8, p. 74]).
(2) My ¥ p in M(X) if and only if My -4 p oin Mb(K) (here the p's are

restricted to K) for each compact K in X whose boundary oK has

u-measure zero. (This is casy to prove.)
In this article we study the convergence of image measures and sonme 1
~ |
related integrals. More specifically, let F(X,Y) be the set of measurable
|
functions from X to Y, where Y is a second countable locally compact
s ) 1
Hausdorff space. By an image of u € M(X) under a function f € F(X,Y)
i | ! ) b L 5 5
we mean the measure pf “(A) = p{x:f(X) € A} for A € Y. The weak conver-
B -1 ointce S
gence of images pnfn , where Pn are weakly convergent probability measures

is studied in [3} and {14). 1In particular, Theorem 5.5 in [3] (due to H. Rubin)

This research was sponsored in part by the Air Force Office of Scientific
Research under Grant No. AFOSR-74-2627, and by the National Science Foundation
under Crant No. ENC75-13653. 5
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W . k : :
asserts that if P > P in M (X), and f (x ) - f(x) whenever x -+ x for
n b n' n n
e B T e e e : :
P a.e. x, then P f > Pf in db(\). We present a vague convergence
nn
analogue of this as well as a converse. [Its proof is based on
a Fatou-like lemma for vaguely convergent measures. We also present a
random version of it dealing with the convergence in distribution of
; sy il y
random image measures “npn where ﬁn is a random measure on the non-
negative real numbers R, and ¢n is a random function from Ry to Y. We
discuss how such random image measures can be used for analyzing thinned
point processes and random measures as studied in [7], [8], [10], [11]
and [12].
The convergence of integrals ffndun, for fn e F(X,R), is essentially
i " S : : =1l
equivalent to the convergence of the image measures unfn , because, by

a change of variable,

fxfn(x)dpn(x) = fRLdunfn—l(t).

Using this ddea, we obtain (in Section 3) several convergence theorems

for these integrals when the un's are weakly or vaguely convergent. These
are similar to the well-known result that if p-integrable fn £ F(XJ(Q
converge in p-measure to some f ¢ F(X,R+) then ffndu > ftdu if and only if
the fn are uniformly p-integrable. We pursue this theme further in Section
4 where we study the convergence of measures Xn(A) = fkn(x,A)d;“(x). Our
results here contain the key Theorem 2.1 in [5] on mixtures of probability
measures, which is used for analyzing extreme order statistics of exchange-

able variables or random sized samples, and for analyzing randomly selécted

partial sums.




2. Convergence of TImage Measures

image measures

In this section we consider the vague convergence of

=3 . b s AR :
“nfn . We begin with a few preliminaries.

The type of convergence on the functions fn that we shall assume is

as follows.

efiniti 2:1.  Let £ and fn be in F(X,Y) and let p and “n be in M(X)

defilnition
for n > 1. We say that fl converges continuously to f a.e. [ A fn(xn) = £(x)
= ;

whenever x > x for x € B € X, x e B e X and p (8%) = 0 = u(Bc). Ve denote
n n n n o n

. S; . S R e a .
this by fn f in F(X,Y) a.e. b

The Theorem 5.5 in [3], on the convergence of images of probabilities

¢ which we mentioned above, readily extends to images of arbitrary measures

in Mb(X) as follows.
Theorem 2.2. Suppose My 3 p in ﬂh(x) and fn $f in E(X,X) a.e. [ Then

o [ A S
unfn -+ 1uf in db(Y).

= ; = el :
Proof. The assertion “nrn > uf is equivalent to

Idm inf f—](G) for all open G € Y, and
e n

nE"tee) <

= gy g i
uf ) 1Jmn Lnfn Y.

The inequality follows as in the proof of [3, Theoren 5.5]. The second statement

follows since

b ETHY) = (0 > u(0 = uETH),

nn
Our aim is to prove an analogue of the preceeding for vague convergence. ‘
The last preliminary we need for this is the following Fatou-like result. I8

- A\ 4 v ¥ & Ve ehuecs
Theorem 2.3. If either y = p in M (X) or p_ » p in M(X), and | % f in
~ n b n n

-

P(X.R+) a.e. o, then

£ EG) | dulx) < lim inf S ifn(x)[ du (%) .
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s

J ;
Proof. Suppose that Wy Yy in Mb(X . Then by
in Hb(R). Let a > 0 be such that -a and a are
-1
uf ~, and let
g, (t) =g lt]

for |t] < a

f 0 otherwise.

3 il =1 o :
Clearly g_ is bounded and continuous a.e. uf ~. Then, using a standard change of
e

variable formula for integrals, we have
o 3y

AP Al I N 31

Theorem 2.2 we have y f
nn

continuity point

/ [£(x)| du(x) = ga(t) duf—l(t)

{| £ (x) |ca} R

2 =il s S
= 11mn { ga(t) dunfn (t) = 1111I f

< lim infn f |fn(x)= dun(x).

“

A I R 2

L w

»ur

g

=l

of the measure

|f (x)l du (x)
(£ (x)]<a} " »

An application of the monotone convergence theorem to the first integral, as

e . ~1
a > « through continuity points of uf ~,| yields the assertion.

) i
Now consider the case in which Vi ¥uoin M(X).

(e8]
sets in X such that Lj Ki = X and u(ﬂKj) =00
i=1
by Lemma 2.6 below. For each Ki ve have B

1

restricted to Ki)' Then by the prececeding paragraph,

f if(x)‘ diréx) < Iim infn f

K, 5
i i

An application of the monotone convergence theorem

the assertion.

We now come to the main result of this section.

. " b 4 . o ¢ " s X
Theorem 2.4. Suppose u_ -+ u in M(X), f_ =+ [ in F(X,Y) a.e.
e n n

g "o -
un . are in M(Y), and
4 .

for

all

to

The

Y

first

s

Let K, <& }\'2(':

integral yic

the

\
'

latter

W I !
SRS Mh(kj) (here the u'

;-

be

are

and

compact

is possible
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!(n(>)| dnn(x) < lim jnf” { ;ln(x)l dw“(r).



(1) inf lim sup_u (f—l(K)r]BC) =0 for all compact K e Y.
e by nEn Y

_1 v -1
The . i E)e
en unfn i in M(Y)

Remark. .Condition (1) involving both the p's and f's may be difficult to
P o
verify in some cases. A sufficient condition for (1) involving only the

<«
f's is this: For any compact K € Y, there is an N such that Lj f;l(K) e bX.
n=N

To see this let B = {) fhl(K) i Gl
iy D

Proof. We shall prove the assertion by establishing the equivalent statement

that

1

(2) 1imn unf;l(A) = FET (A for all A e bY with uf_l(ﬁA) = 0,

Pick an AebY with uf_l(BA) = 0. Let g(+) = 1A(-), the indicator function
of A. Since fn $ f in F(X,Y) a.e. s and g is continucus a.e. ufﬁl, then
it follows by an elementary argument that gofn 5 gof in F(X,R+) a.e. uo. Then
by Theorem 2.3,

uf T (A) = f gaf(x) du(x) < lim 1nfn f L~fn(x) duu(x) = 1im LnrnLnfn (A).

We shall complete the proof of (2) by showing that

-1 -1
in i < uf A).
(3) lim supnunf“ (A) < u (A .
To this end, fix an € > 0, and choose a compact B in X such that
-1

t e 5y o
1im supy un(fn (A} 1 B) .

This is possible by (1). In addition, take B to be such that wiles) = 9.
This is possible by Lemma 2.6. Clearly

p -1
(4) lim sup ulf

- : y ‘_J ) '_] i -(‘
£ (A) = lim sup (“n(‘n (MNB) + un(rn (A1 BY))

w Ml
< i 3 v ! + ¢
~lim sup Unrn (A)




2 i 4 IS e s (R Y 3 = e A e K N el B £ 5 - St e i

wvhere o and [n are the restrictions of B and fu’ respectively, to the

. : W ot T e
set B. Under our assumptions it follows that ﬁ“ -+ 1 in N}(H) and £ = f
) n
AT e o s B el s ol L G :
in F(B,Y) a.e. “n’ and so by Theorem 2.2, 9 > uf in uh(;). The

AR oSy i T :
latter implies that unfnl(A) + fif "(A). Using this in (4) yields
L -1 sl -1
Eims Snpis s EES AN R (A e S R (AN

n nn — =

Since ¢ was chosen arbitrarily, this proves (3), and we are done.
The next result is a converse to the last theorem.

- : e ! B
[heorem 2.5. Let [ be in M(X) and fn be in F(X,Y) such that “nfn s in
M(Y) for n > 1. Suppose the following hold.

: -1 v -1 . R
(1) “nfn Y ouf 1 in MCY) for some pn & M(X).

4 C ¢ S

5 £ on P (X;Y) a.e. n . !
(ii) - En PO ) e M

(iii) f_](V) contains the open sets of X.
(iv) suaqu (B) < @« for all BebX.
= g .
(v) The ulf1 satisfy ().
Then p_ % p in M(X).
n

Remark. A weak convergence version of the above is as follows. If o is in

-1 w e S W
> M 3 IS
b nf Ll l‘(\ ), then u u

Mb(x),cmnditions (ii) and (iii) hold, and unf
in Hb(X). This is proved similarly. 1In this context (iv) holds, since

un(X) = unf:l (Y) » llf_l(\') = p(X)
implies (iv).) '
Proof. Condition (iv) is equivalent to the “n being vaguely relatively ’

compact, [8, p. 94]). Consequently, any subsequence of P contains a subsequence

v A : i
u o, such that yn , > some ) in M(X) as n' » «». By Theorem 2.4 we have
n n

un,f_l ¥ ?f—] in M(Y). From this and (i) it follows that \t_] = ufﬁl.




R - -1 3
For any open set A in X, let BegY be such that A f (B) Yhen

X(A) = M’”l(n) ,:f"l(u) = 1 (A).

. maiiated .

Thus A = Lx,. and so the original sequence Wy BT

We end this section with the following lemma, which we used above.
Lemma 2.6. If u is in M(X) and X is a compact set in X, then there is a
compact U ¢ X containing K with p(QU) = 0.

Proof. FPor each x e K, let v be a compact neighborhood of x. Since K is

compact, there ;nﬁo.xl, ceea X such that . . ‘
i

n
ke U v, =¥
=1 i

By Urysohn's lemma there is a continuous function f from X to the interval
[0,1] such that f(x) = 1 if x € K and f(x) = 0 if‘x e VE.
Let K. = {x : f(x) > e} for ¢ > 0.
Each KL is closed and contained in V and so it is compact. Also because
f is continuous, then 3K Cix € V : f(x) = ¢ }. It follows, since p is finite

on V, that there is an ¢' such that u(2K ') = 0. This completes the proof.
€
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3 Convergence of Integrals

—e b = Ingligiae S MBS SR > fa s

In this section, we study the convergence of the integrals and
measures

ek f[n(x)dun(x) and £ u_(A) = itn(x)d“n(x) for A e X,
where fn e F(X,R) and M, € M(X). We show how their convergence is

related - to the uniform pn—integrability of the f's, which is defined
as follows.

Functions fn € F(X,;R) (n > 1) are said to be uniformly p-integrable,

for p € M(X),, if there is- an h € ¥(X, (0,«)) such that ph < « and

lim sup

J ' |£_(x)|du(x) = o.
a0 L 4};1(\” Sahse)) "
T

(SCeA[Z, Theorem 2.12.7] concerning o-finite p's.) In particular, the fn

are uniformly u-integrable for u ¢ Mb(X) if

lim sup [ :fn(k)fda(x) = 0.
a->o {l[n(x)i > a}

We shall usée the following generalization of the Iatter.
Definition 3.1. ILet fn be in F(X,R) and Wy be in Mb(X). We say that the
fn are uniformly un—intcgrable if

lim lim sup A ,fn(x), dun(x) = 0,
a»» ﬁﬁn(xﬂ =al

(This definition cau be extended to un in M(X) in an obvious way.)

W ; S Mal “a T
'}p{yaorem 3.2. Suppose Wy M in ,Nb(X); tn o e i P().,R+) aze. | 3 and

A “n®

“nfn < « for n > 1. The following statements are equivalent.

(i) “nfn > uf and uf < .

- >
i » in M_(X).

(ii) fnun > fu in Ib( )

(iii) The En are uniformly un—integrablc.

(iv) The functions gn(L) = unfn_](t,m) (t > 0) are uniformly Lebesque-

integrable.

Proof. If (iii) holds, ther there is an M such that

v




g il L A b ) Vi R v A T e e i 4

wf <M+ | f (x) dp_(x) < M+ ap_ (X).
nn T E ML) n = n
l,. ()\) s A
n —
Since v (X) - p(X), then lim sup u f < «, and so by Theorem 2.3, we have
i ot n nn

uf < ©, To finish proving that (i) is equivalent to (iii), just parrot
the proof of [3, Theorem 5.4].
If (ii) holds, then

M

XY - HEX)y = 1 s @
nn n“n(\) r fu(X) nf >

which is (i). Now suppose that (iii) holds. We will show that (ii)
follows. Let g be a bounded, continuous nonnegative function on X.
Clearly the functions fn(')g(-) are uniformly pn—integrable and
fn(°)g(°) 5 f(*)g(*) in F(X,R+) a.e. . Using the established fact
that (iii) implies (i) we obtain
£u(8) = [eG)E () du (x) > JgG)E(x) dulx) = fu(g).

This yields (ii).

We finish the proof by showing that (i) and (iv) are equivalent.
By a change of variable and a well-known expression for expectations
we can write

0 w - -1 : > o -1 AT LFS m, ;
it = (J)' tdp £ 7 () (J; w £ T (E,e)de Z[E,n(t.)dt-

=1 el =
From Theorem 2.2 we have unfn sxiE e = Blien gn(t) SNOI(E)= UG l(t,m)
for all but a countable number of t's. 1Tt follows, by the classical con-
vergence theorem for uniformly integrable functions, [ GO s 2al 2051k
that fgn(r)dt > fg(t)dt if and only if (iv) holds. This proves that (i)
is equivalent to (iv).
" . Y fon MY C . 57
Ehsgzgq_3.3. Suppose “n = odm MK fn + £ in P(X,KF) a6 un: and the
fu and fn“n are in M(X). The following statements are equivalent.

’ v 2
(i) fvn : fy in M(X).

(ii) The (n are uniformly ‘;:n—int(‘gr;lblc on each compact set in X.




T —

Proof. Suppose (i) holds. Let K be a compact set in X, and pick a compact
roa it S 3 X = v :

set K' containing K with fu(s5K') = 0. Then fn“n > fu in Mb(K')’ and so
by Theorem 3.2 the fn are uniformly uu—integrublc on k' and hence on K.
This proves (ii)

Now suppose (ii) holds. Let g be a continuous nonnegative function
on X with compact support. From the definition of weak convergence, it

\% =1
is clea: g 4 = ot dnt M XY et X = (g ] . By Theorem 2.2 we
is clear that g cuodin db( ) Let o (“Un)rn y
have A % )\ = (vu)[~] in M (R ).
n = D
Let a be a continuity point of X and let
B(t) =} jt] dor Q< <a |

0 for € > a.

Using a chaunge of variable formula for integrals, it follows that

£ (0gGddn () = h(O)d gy ) (1)
{fn(x) <tal R

= +
= b = [ f () g(x) du(x).
{£x) < al
Therefore,
lim Supnlfnung - fugl < lim unpn]f an(x)g(x)drn(x)

{fn(x) > Al

~ f f(x)ﬁ(x)dp(ﬂ)l.
{f(x) > a}
As in the proof of Theorem 3.2 one can show that fug < o, This and the
uniform un&int(:;',rnbi.lity of the rn insures that as a + «, the right hand
side of the above inequality converges to zero. Thus f My ¥ fi and the
ol 4

proof is complete.

10

. L‘i.-'..A




) = v . », L C 2 YOy
82£2££§£z~}.4. Suppose By > uoin M(X); fn + f in F(X,R ) a.e. y_; and

HEFIEE < b forine™> ]

e The following statements are equivalent

(1) pnfn »+ puf and pf < =,
QD) £y ¥ £ 10w (x).

(iii) The fn are uniformly un—integrable on each compact set in X and

(1)  inf lim sup_ fnun(nc) = Q.
BebX

Proof. This follows directly from Theorems 3.2 and 3.3 and the fact

[8, p. 95]) that fn“n ¥ fu if and only if fn“n ¥ fu and (1) hold.
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4. Convergence of Mixtures of Measures,
5 A kernel k from X to Y is a mapping (x,A) - k(x,A) from X x Y to
§ R+ such that k(+*,A) ¢ F(X,R,) for each A, and k(x,*) € M(Y) for each

x € X. We let K(X,Y) be the set of all kernels from X to Y. For p e M(X)
and k € K(X,Y) we let pk be the measure in M(XxY) defined by

1 pk(axB) = [ k(x,B)du(x) for Aec X, Be VY.
| A

In this section, we study the convergence of such measures pnkn. Our

results are extensions of those in [5] on the convergence of mixtures
of probabilities. !

As an illustration, consider the randomly selected partial sums

N
: T , where the N's are independent of the X's. We can write
n k=1 n,k

P(Zn € B) = fkn(x,B)dun(x)

where
{ [Xan]
: kn(x,B) = P( kzl kn,k € B), and un(A) = P(Nn/un e A).

Our first result (Theorem 4.1) implies that if kn(x,-) - k(x,*) for all

[Eca i}
v ! : Sy Ll X
! x £ Rand o = u in M(R) (that is, the %X and N /a converge in
| n n,k n n
k=1
distribution), then Zn converges in distribution. Our second result (Theorem 4.2)

‘ [xa_]
i implies that if L X and 7 converge in distribution, then so does
| k=1 n,k 1

Nn/an. Other applications to extreme value statistics of exchangeable |
events or random size samples are given in [5].

v w fe % , . AT

Theorem 4.1 Suppose pu_ > p in M (X), and k and k_ in K(X,Y) are such
A n b n

w
that unkn(XXY) < » and kn(xn,-) * k(x,*) in Mb(Y) whenever X, 7 X where

‘ ] . c o " R
| X, ¢ B“, x £ B, and “n(nn ) = 0= yu(B°). Then u“kn L Mk in Mb(xf\) if




and only if the functions kn(-,Y) are uniformly nn— integrable.

Proof. Let f be a bounded continuous nonnegative function on XxY

and let

h () =[£Gk Gdy).

For any X, TX with x € Hu and x € B, the functions f(xn,') are bounded,

and clearly f(xn,-) S f(x,*) in F(Y,R,) a.e. kn(xn,'). Then Theorem

3.2 yields hn(xn) > h(x) = ff(x,y)k(x,dy). In other words hn $ h in F(X,R+)

I T
n

Now suppose the kn(-,Y) are uniformly uu—integrable. Then clearly

the hn are uniformly un—integrable and so by Theorem 3.2
unknf = unhn > ph = pkf.
Thus unkn ¥ puk. Conversely, if the latter holds then

Je GV)du G > [k Ydu(x)

and so by Theorem 3.2 the kn(°,Y) are uniformly un—jntcgrable.

In the next result, we use the statement that keK(X,Y) identifies

mixtures in a set ' M(X). This means that if fk(x,-)dx(x) = fk(x,~)du(x)

in M(Y) for any X and p in T', then X = . See [5] and the references therein.

Fheorgmmb.Z. Let My and u be in Hb(X), and kn and k be in K(X,Y) for n > 1.

Suppose the following conditions hold.

i ' (<5 i 3 3 ‘C =
(i) supnun(k) < and B%?; supnun(b ] (18

(e a2y, fk“(x,')dun(x) ¥ fk(\,')du(x) in Mb(Y) where p is in some set I'c M(X)

which contains the vague limits of subsequences of p (n 1
n -

(iii) k identifies mixtures in T.

i w i M ! \ 2l 3 s > " -
(iv) k (x .*) 7 k(x,*) in M (Y) whenever X, * X, where x ¢ B and w (B 7) = 0;

and x ¢ B where B is closed and lim infnun(Bv) = 0.

w
‘he ) in 1 .
Then u" * 1 in Ib(X)

c

Proof. Condition (i) is equivalent to th‘-1|](n - 1) being weakly relatively
OOt ’ ! - )

compact. Then for any subset of integers one can choose another subset




\Y s - . . :
N such that u > some A in Mb(x) as n > «© in N. Suppose we knew that

w - v .
(1) fkn(x,°)dpn(x) > fk(x,')dk(x) in Mb(i) as n-+ « in N.
Then from (ii) and (iii) we would have p = A, which proves the assertion

¥
Mo c

To complete the proof, we only need to verify (1). Let f be a bounded
continuous function on Y and let
= 1
h G = [E()k, G6,dy).
For any X X with X € Bn and x ¢ B, it follows by (iv) that hn(xn) -+ h(x)
and A(BC) = 0. Also the hn(n € N) are uriformly pn—integrable by Theorem
3.2, since (ii) implies that pnhn > ph < ». Applying Theorem 3.2 to the

H and hn(n e N) we get

IX fo(y>kn<x,dy>dun<x> =y h > b= fx fo(y>k(x,dy)dx<x>.

This proves (1), and so we are done.

We now show how the above results apply to convolutions. For this we
assume that the space X is also a group with addition as the operation. We
let X*p be the convolution of A and p in Mb(X) which is defined by
AFu(A) = f*(ﬁ~x)du(x).

Corollary 4.3.(a 10 5 .4 in M (X 3 * L ;
Corollary 4 (a) 17 An and Un o Lb(k), then Au e A%y in Mb(x).

b) S se *y 3 Ay S iy M, (X
(b) Suppose An ke M and AL A Mb(h),

sup_p_(X) < ©» and inf sup_u (BC) =0
nn 2
Bie bX =

and A*p = A%v for p,v € Mb(X) implies p = v. Then j Y uoin Mi(x).
n )

Proof. These assertions follow directly from Theorems 4.1 and 4.2.
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2.

Random Image Measures and Integrals
The above results can readily be extended to describe the conver-
-1

£ =% c Y c e
i de 50 and f:n(x, ) d&n(x),

gence in distribution of random measures Cd
n

and integrals f¢n(x) dfn(x), where in and nn are random measures, ¢n
are random functions and }n are random kernels. We illustrate this
here by presenting random versions of Theorem 2.3 and Corollary 3.4.
We begin by defining the type of random functions that we shall
consider. Let G = G(X,Y) be a subset of F(X,Y). We assume that G
is endowed with a separable, metrizable topology with the following
property: If fn > f in G and f is continuous at x, then {n(xn) > f(x)
whenever xn + x dn X.

Examples of such G are:

(a) G = {continuous functions on [0,1]} with the uniform topology
(b) G = {feF(R,R): f is right continuous and nonincreasing} with

the relativized Skorohod topology [3, Chapter 3], or the weak topology.

(¢) G = {feF(X,Y): £ is continuous} with the topology of uniflorm

OJ
convergence on compacta.

A random element of G is defined to be a measurable mapping from

a probability space to (G,G), where G is the smallest o-field containing
the topology of G. Similarly, a random measure on X (a random element
of M(X)) is defined to be & measurable mapping from a probability

space to (M(X), M) where M is the smallest o-field containing the vague

topology of M(X).

For our first result, we assume &, {;l’ {"2’ «.. arec random measures
on X and ¢, ¢], I are random elements of G(X,Y) such that

1

90 e

= ) .
8¢ . t’,l(bl s ... are random measures on Y. We assume that § ¢ §, (}2,...




are defined on a common probability space. We let Df be the set of

discontinuity points of f ¢ G. We let i) denote weak convergence in

distribution of random elements.
Theorem 5.1. If (En,¢n) D (6,¢), and with probability one L(D;) =0

and

(1) inf 1im sup En(inpl(K) N BC) = 0 for any compact K & X,
BebX

-1 ; =1
then £n¢n +D £¢

Proof. Since (gn,¢n) »D (¢£,9), then there exist random elements &£%,¢

l*,...
and ¢*,¢l*,... on a common probability space such that (En*,¢n*) > (E*,0%)
a.s., and
(2) (5 %,0%) =p (E_,0) and (£%,4%) =p (£,0).
This follows by the Skorohod-Dudley a.s. representation of convergence in
distribution of random elemeuts of a separable metric space, see [4], [9]
and [13]-

Clearly é*(D¢*) = 0 a.s. and the (gn*,¢n*) satisfy condition (1).
Moreover, the nature of the topology on G and &*(D¢*) =0 a.s. imply

5*{X:¢n*(xn)'ﬁ v%(x) for some x_ x} = 0 a.s.

Then Theorem 2.3 yields &S‘*—l > E*¢*n1 a.s. From this and (2) we have

T

n

For the next result we assume that 5,(1,&2,... are random measures

on X, and ¢,¢],¢2,... are random clements of C(X,R+) such that

R1.¢l.€2,¢?,... are defined on a common probability space and the ¢ ;]
- - n'r

(and ¢¢) defined by

0 b, (D) = IA¢n<x)(1gn(x)

are finite random measures on X.




— g

Theorem 5.2. Suppose the following hold.

N

(i) (En,¢u)->v (£,9) and ;(D¢) = 0 a.s.
(ii) With probability one, the ¢n are uniformly En—integrable an each

compact set in X.

(iii) With probability one,

inf 1im sup_ ¢ £ (B7) = 0. 1
BEbLX n ‘n’n

Then ¢n€n *D ¢& and
Jo,60de_(x) »p [o()dE(x).

Proof. This follows from Corollary 3.4 and an argument like that in the

preceeding proof.

L7
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6.  Thinning of Point Processes and Random Measures

In this section we show how the above results on image measures can be
used in analyzing thinnings of random measures.

In [111 it was shown that many thinnings of point processes, as in [7],
[8], [10] and [12], can be described as follows. Suppose that mass is randomly
placed on R+ according to a random measure ;. (The ¢ is a point process if with
probability one £ (A) is integer-valued for each AebX.) Assume that this mass
is thinned by another random measure n on R+, with n(t) = n([0,t]) < t a.s. for
all t > 0, such that the mass ¢(t) = ([0,t]) in the interval [0,t] is replaced
by an amount n(z(t)). In other words, the retained mass (the thinned random
measure) is represented by the composition noZ of n and ¢.

One result in this setting is the following For this we assume that

L= G
nnoc is a thinned random measure as described above where the thinning
measure n_ depends on n and nn(R+) = » a.s. We also let n be another random
measure on n and let c¢ and a, be in R+ with By T By uoa for u;H(R+) and
acR, we mean the measure defined by poal0,t] = u(at).

ool " o
Theorem 6. 1. 1f £hiz(t) S then n, ogoa -pmnoc if and only if noa -+

AR g
This is proved for point processes in [7] and for random measures in [11].

It contains the first result in thinning, see Renyi (1956), which is as follows.
Suppose ¢ is a renewal process whose interpoint distances have mean «. If
each point of ¢ is independently retained with probability P wvhere p. » 0,
1 n

5 ) ; : il A ; ;

and I the thinned process, then £,° P, converges in distribution to a
1

Poisson process with intensity a .

The proof in [11] of the above theorem is based on the following result
which describes the continuity of the composition operator. This is proved

directly in [10], but here we note that it is a corollary of our Theorem 2.4,

18




For this we let

H(t) = inf {s : u(s) > bk

be the left-continuous inverse of w(t) = n[0,t] for neM(R ) with u(R,)
3 th L

R -
% v =
Corollary 6.2. Suppose ).“ > A and By M in I~1(R+), where Un(R-i-) = w,
, v
= & i ) = 5 The A ¢ 2 : MR
p({oh 0, anc )\(la) 0 Ihen \nuu" > Aop in I\[\+).
Proof. Clearly 0 < s < p (t) if and only if 0 < ﬁn(s) < t. Consequently,

o = 3 ! = = = A=l
Ay (e} =2 {s >0 3 § () €6} = 2y "{0,t].

Similar to the proof of [11l, Theorem 2.1] it follows from Mo ¥ 4 and wCtal) =0,

r ’ . . . .
that pn(t) > 1u(t) for each continuity point t of p. Since these p's are

: : po e
nondecreasing and \(Dﬁ) = (0, then one can easily show that oot

a.e. A . Furthermore, for each t
n

(e8]

U A 10,00 - nu1 [o.n () lle bR,

n=1

Thus by Theorem 2.4 we have

o A-1l w a-1 _ i
Anoun = An“n > A = XoM.

A

We began this section by describing a thinning of a random measure g

on R, by another random mecasure n such that the thinned measure is

+

i in l“(R+, R_'_)

the composition

noz. An obvious question is,how can this type of "ordered" thinning on !:}

be characterized on a general space X, which may not be totally ordered?

=1

not = nc (as we saw in the last proof), then the following characterization

by image measures is rather natural. Think of l-l+ as a slab

of mass that is

deposited on X according to a random function ¢ from R+ to X such that the

t-th bit of R+ is deposited at the location ¢(t). Thin the deposited mass by

a random measure n on R+ such that the mass ¢  (A) deposited in a set A €

19
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measure is the

; =1 A : :
is replaced by an amount n(¢ ~{A)). That is, the thinned
y ~0, = : o

image measure ndé . Our Theorems 2.2 - 2.6 and Theorem 5.1 can be used

where the n's and ¢'s

to describe. the convergence of such thinnings nn¢

depend on converging paramelers.
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